Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases.
نویسندگان
چکیده
Expansions of trinucleotide repeats in DNA, a novel source of mutations associated with human disease, may arise by DNA replication slippage initiated by hairpin folding of primer or template strands containing such repeats. To evaluate the stability of single-strand folding by repeating triplets of DNA bases, thermal melting profiles of (CAG)10, (CTG)10, (GAC)10 and (GTC)10 strands are determined at low and physiological salt concentrations, and measurements of melting temperature and enthalpy change are made in each case. Comparisons are made to strands with three times as many repeats, (CAG)30 and (CTG)30. Evidence is presented for stable intrastrand folding by the CAG/CTG class of triplet repeats. Relative to the GAC/GTC class not associated with disease, the order of folding stability is found to be CTG > GAC approximately = CAG > GTC for 10 repeats. Surprisingly, the folds formed by 30 repeats of CTG or CAG have no higher melting temperature and are only 40% more stable in free energy than those formed by 10 repeats. This finding suggests that triplet expansions with higher repeat number may result from the formation of more folded structures with similar stability rather than fewer but longer folds of greater stability.
منابع مشابه
Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
We have embedded the hexameric triplet repeats (CAG)(6) and (CTG)(6) between two (GC)(3) domains to produce two 30-mer hairpins with the sequences d[(GC)(3)(CAG)(6)(GC)(3)] and d[(GC)(3)(CTG)(6)(GC)(3)]. This construct reduces the conformational space available to these repetitive DNA sequences. We find that the (CAG)(6) and (CTG)(6) repeats form stable, ordered, single-stranded structures. The...
متن کاملReplication dependent instability at (CTG)•(CAG) repeat hairpins in human cells
Instability of (CTG) x (CAG) microsatellite trinucleotide repeat (TNR) sequences is responsible for more than a dozen neurological or neuromuscular diseases. TNR instability during DNA synthesis is thought to involve slipped-strand or hairpin structures in template or nascent DNA strands, although direct evidence for hairpin formation in human cells is lacking. We have used targeted recombinati...
متن کاملHairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15.
Although triplet repeat DNA sequences are scattered throughout the human genome, their biological function remains obscure. To aid in correlating potential structures of these nucleic acids with their function, we propose their classification based on the presence or absence of a palindromic dinucleotide within the triplet, the G + C content, and the presence or absence of a homopolymer. Five c...
متن کاملAlternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
Most models proposed to explain the disease-associated expansion of (CTG)n.(CAG)n and (CGG)n.(CCG)n trinucleotide repeats include the formation of slipped strand DNA structures during replication; however, physical evidence for these alternative DNA secondary structures has not been reported. Using cloned fragments from the myotonic dystrophy (DM) and fragile X syndrome (FRAXA) loci containing ...
متن کاملStructural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus.
The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 24 11 شماره
صفحات -
تاریخ انتشار 1996